
Computer Supported Cooperative Work 12: 465–490, 2003.
© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

465

The Appropriation of Interactive Technologies:
Some Lessons from Placeless Documents

PAUL DOURISH
Department of Information and Computer Science, University of California Irvine, Irvine CA
92697, USA (E-mail: jpd@ics.uci.edu)

Abstract. Appropriation is the process by which people adopt and adapt technologies, fitting them
into their working practices. It is similar to customisation, but concerns the adoption patterns of
technology and the transformation of practice at a deeper level. Understanding appropriation is a key
problem for developing interactive systems, since it critical to the success of technology deployment.
It is also an important research issue, since appropriation lies at the intersection of workplace studies
and design.

Most accounts of appropriation in the research literature have taken a social perspective. In
contrast, this paper explores appropriation in terms of the technical features that support it. Draw-
ing examples from applications developed as part of a novel document management system, it
develops an initial set of design principles for appropriable technologies. These principles are particu-
larly relevant to component-based approaches to system design that blur the traditional application
boundaries.

Key words: appropriation, customisation, deployment, design, document management, flexibility,
visibility

1. Introduction

For many years, interactive system research has explored the question of custom-
isation – how interactive technology can be specialised to the needs of particular
users or settings. For almost as long as we have been developing interactive
systems, we have been developing ways to make them customisable. Customisable
systems can be adapted and tailored by their users, to fit them to the different
situations in which they might be used.

Although customisation was originally studied in the context of conventional
single-user systems, it has also been a common topic of concern in multi-user
settings and Computer-Supported Cooperative Work. Like individuals, different
groups operate in different ways and in different settings, and may need to adapt
the technologies to suit those circumstances. However, in addition, groups are
themselves made up of individual users, who might each want to work in different
ways. So, in looking at customisation in CSCW, researchers have explored the
need to pay attention to balancing the needs of the group against the needs of the
individuals who make up that group (Greenberg, 1991).



466 PAUL DOURISH

Studies in CSCW have also shed new light on customisation in single-user
technologies, revealing that, even in those settings, it is an inherently collabora-
tive phenomenon. Customisations emerge within workgroups and social settings.
In developing a tailorable technology called Buttons, MacLean et al. (1990)
discovered that a critical element in the successful deployment of the system was
the establishment of a “tailoring culture,” an understanding on the part of the
participants that it was acceptable to tailor their Buttons, and that making changes
was acceptable organisationally (tailoring was allowed), technically (the system
would not break), and socially (people would not be offended if you changed some-
thing they wrote). Similarly, MacLean and his colleagues worked to encourage
users to share Buttons with their colleagues, to look for ways to improve them,
and so on. Establishing tailoring as an acceptable social practice was critical to the
success of the system.

In a similar vein, Mackay (1990) looked at how customisation occurs within
social networks. She studied the patterns of diffusion and sharing of software
customisations within organisations, and mapped out the paths that particular
customisations followed from one organisation to another. By doing this, she traced
out the social networks through which customisations were shared, and identified
various key roles in the adoption of customisations and customisable technologies
within organisations and social systems. Like the Buttons work, this empirical
study highlights the collaborative nature of customisation practices. Customisation
is always a collaborative phenomenon.

However, there is a stronger position that we can take on the relationship
between customisation and collaboration, and that is to see customisation as
inherent to collaboration (Bentley and Dourish, 1995). From this perspective,
customisation is a feature of all collaborative practice. My argument here proceeds
from the large body of studies of work practice in CSCW. These studies have
repeatedly demonstrated the intricate relationship between work practice and the
detail of the settings in which it emerges. This “situated action” perspective, as
introduced by Suchman (1987), has become one of CSCW’s dominant perspec-
tives on human action. Drawing on ethnomethodological foundations, the situated
action perspective looks on the sequential organisation of action as a moment-
by-moment improvised affair, emerging in response to the circumstances of its
production – physical circumstances, social circumstances, organisational circum-
stances and so forth. Everyday action continuously incorporates elements of those
settings in order to accomplish the work at hand. So, features of the setting and the
artifacts around which working practices is organised are continually reconfigured,
repurposed and incorporated into the way in which those practices develop. Since
interactive technologies are part of these settings, they are also implicated in and
subject to this reconfiguring and repurposing. It is in this sense that I suggest
that customisation is inherent to collaborative activity. The ongoing, incremental
adaptation of interactive technologies is inherent to the emergence of practice, and
practice is inherently shared.



THE APPROPRIATION OF INTERACTIVE TECHNOLOGIES 467

This is a broader view of customisation than the traditional perspective within
HCI; to avoid confusion, I refer to it as appropriation. Appropriation is the way
in which technologies are adopted, adapted and incorporated into working prac-
tice. This might involve customisation in the traditional sense (that is, the explicit
reconfiguration of the technology in order to suit local needs), but it might also
simply involve making use of the technology for purposes beyond those for which
it was originally designed, or to serve new ends.

In this paper, my goal is not to propose, describe or develop a theoretical
framework. Similarly, my use of the term “appropriation” is not the same as that
developed in Adaptive Structuration Theory and described elsewhere in this issue.
Instead, my goal here is to show how the problems of appropriation are technical
problems, and begin to work through some of the consequences of that position.

By technical problems, I mean problems that arise out of the fundamental
structure of the technologies from which software systems are constructed. The
problems, then, are inscribed into every software artifact. It follows that the solu-
tion to these problems must involve some kind of transformation of the technology
out of which software systems are constructed. In CSCW, we have typically
explored appropriation from a social perspective. So, for example, investigations
such as Orlikowski’s study of the adoption of Lotus Notes (Orlikowski, 1992,
1995), Grudin and Palen’s work on calendar systems (Grudin, 1988; Grudin
and Palen, 1995; Palen, 1999), and Button et al.’s study of workflow systems
(Bowers et al., 1995; Button and Sharrock, 1997) have uncovered a range of
social and organisational issues contributing to the success and failure of CSCW
system deployment. However, appropriation relies on flexibility in both practice
and technology, and in particular, flexibility in the way in which the technology
can be mapped onto user needs. While the social investigations have begun to
illuminate issues around the flexibility of working practice, we need at the same
time to explore the flexibility that is required of technologies, and how it might
be provided. So the question I want to ask here is, what features of technological
design support appropriation? And so, how could systems be designed in order to
accommodate, support and encourage the process of appropriation?

There are two reasons that these are important questions. The first is as a prac-
tical matter. In CSCW, we would like to be able to develop technologies that help
people work. Appropriation is endemic to collaborative work; it is a regular part
of the picture. So we must be able to build systems that deal with appropriation.
Developing a deeper understanding of the technical features that support appro-
priation can help us build more appropriable technologies, as well as helping us
analyse the problems that accrue when technology is not appropriable. The second
important aspect is as a methodological matter. Appropriation lie at the intersection
of technical design and social practice. Investigating appropriation and developing
an understanding of its consequences for technical design is a way to provide a
stronger link between sociological studies of working practice and technological
investigations of design in CSCW.



468 PAUL DOURISH

As a focus for this discussion, I want to use the example of a document manage-
ment infrastructure called Placeless Documents (or just “Placeless”).1 Placeless
Documents is a technical infrastructure for managing documents and for building
document-based applications. It is based on a simple and extensible model that
provides a novel architectural approach for application development, as well as a
novel conceptual model for end user document management. The Placeless Docu-
ments system serves two roles here. The first is that it crystallises the problems of
appropriation by letting us focus on one particular area, that of document interac-
tion. Drawing on existing studies of problems in managing document collections,
the Placeless system offers a radically different approach to organising information.
The second role is that, as a case study, it provides some insight into the problems
of appropriation as technical problems. Our attempts to capture difference styles of
application use in Placeless have been yielded different degrees of success; some
of the lessons that we can draw from it apply very broadly.

Although I will give the Placeless Documents system a central position here,
my concern is not, in the end, with Placeless itself. This is not an attempt to evalu-
ate a particular technology. Instead, I want to use this system and the conceptual
approach that it embodies as an occasion to reflect on the relationship between
technological design and work practice. In particular, I want to explore how the
assumptions that lie behind our technical designs can help or hinder users in fitting
technical systems into their work. I would suggest that traditional monolithic or
application-oriented models of system design embody a set of assumptions that can
prove problematic, and that emerging component-based alternatives offer opportu-
nities to incorporate new models of user activity. So this is not simply a question
of “this design” versus “that design”; it is a question of the assumptions that lie
behind the process of design itself.

2. Information management and placeless documents

Much of what we do when interacting with computer systems is information
management. By “information” here, I mean items such as email messages, files,
folders, financial records, digital images, web pages, database records, contact
information, calendar entries and so on. By “management”, I mean the various
tasks that these items require – sorting, searching, clustering, creating, monitoring,
etc.

Given the range of different information processing tasks that we carry out,
and the range of ways that these tasks are integrated into broader individual and
collaborative working practices, we find that the tools given to users to perform
these tasks are typically very limited. In fact, almost all information systems are
based on a single information structure – the hierarchy. Hierarchies pervade infor-
mation systems of all sorts, from the filesystem (perhaps the most widespread
information management device used on conventional computer systems) to email



THE APPROPRIATION OF INTERACTIVE TECHNOLOGIES 469

systems, contact managers, and Web browser bookmarks. Users are forced to find
ways to map their information needs onto this single structure.

A variety of studies have shown the problems that users face in trying to perform
a wide range of information tasks with this simple structure. Barreau and Nardi
(1995) and Kaptelinin (1996), in separate studies, examined how computer users
employ the desktop and the filesystem to store personal information and support
their individual tasks. Their studies point to generic problems with the use of fixed
structures such as hierarchies, such as the requirement that information be placed
into the structure before its use has been determined, the difficulty of reorganis-
ing information once it has been stored, and the mismatch between the system’s
insistence that information be in only one place and users’ understandings that
information can play many different roles for different tasks.

Despite these sorts of problems, Kaptelinin describes a range of creative
approaches and work-arounds developed by the users he studied – conventions
by which information is managed and the mappings between working tasks and
data storage can be maintained. What Kaptelinin’s study vividly demonstrates is
that the creation of personal information structures and procedures for managing
them is an example of appropriation that is carried out continually by computer
users who need to find a way to map between the system’s features and their own
needs. Even just saving files involves creating a meaningful structure of files and
folders that in some way accommodates the tasks into which those files might fit.

The object of the Placeless Documents project was to explore architectures for
information management that could overcome some of the major problems with
hierarchical representations and accommodate the wide range of ways in which
people appropriate information structures to accommodate their different needs.
Our goal was to develop not simply an application for information management
tasks, but also a platform for developing novel information-based applications.
Since it is the conceptual model at the heart of this platform that is most relevant
here, I will focus my discussion on that. A more technical description of the system
can be found elsewhere (Dourish et al., 2000).

2.1. DOCUMENT PROPERTIES

Our paradigm for document management is based on document properties.
Properties are features of the document that make sense to users (e.g. it’s a paper;
it’s about Placeless; it’s from Keith; it’s a draft; it’s due August 12). In our imple-
mentation, properties are arbitrary name/value pairs that can be associated with
documents by users either directly or through applications. Placeless itself imposes
no structure or requirements on the properties of a document. By “attaching”
properties to documents, users can express arbitrary features of the documents that
are consequential for the way in which they want to interact with them, and create
arbitrary associations or groupings between documents.



470 PAUL DOURISH

Conventional filenames often encode the properties of a document. For
instance, when I store a document at “C:\Dourish\Papers\In progress\JCSW\
Placeless.fm”, I am indicating that the document is owned by Dourish, is a paper, is
in progress, is for JCSCW, is about Placeless, and is in Framemaker format. Docu-
ment properties allow us to capture the same sort of information codings while
also addressing observed problems with personal information management. For
example, since documents can have many different properties, users can express
that documents play multiple roles; since properties can be added at any time, it is
easy to file documents incrementally and to revise their codings; since the system
allows any set of properties to be attached, different organisational schemes can
be applied; and since properties are independent of each other, there is no need to
refer to them in some particular order.

2.2. ACTIVE PROPERTIES

We would like to be able to use properties for more than simply organisation. We
would also like to be able to use them to control documents. In the everyday world,
after all, the features of documents have consequences; the fact that a document
has a deadline of August 12 means that I must remember to work on it before that
date. So, we would also like to be able to control how documents behave according
to the properties that users attach to them.

To do this, the Placeless Documents design incorporates active properties.
Active properties are name/value pairs just like normal properties, but also include
runnable code that will be executed when operations are performed on the docu-
ment. For instance the property “log access=true” might incorporate code that will
intercept read and write accesses and make a note in a log file. There are two sorts
of active properties provided by Placeless. “In-line” active properties either existing
document operations (e.g. read and write content, add properties, add to collection,
etc.), while “delegates” augment those operations to provide specialised behaviours
that would not otherwise be accessible (e.g. translate to French, synchronise with
laptop, publish on Web). Just like static properties, any number of active properties
can be added to documents by users directly or through applications; so, active
properties give end users composable control over document behaviour.2

2.3. UNIVERSAL AND PERSONAL PROPERTIES

In the everyday world, documents have different relevances to different users. A
purchase order on my desk might, to me, represent the new PC I just ordered; to
my manager, it is an element for her budget, and for our technical support staff, it
indicates an upcoming installation task. As a result, we need to be able to express
different features of how the document will fit into our practices, configure different
actions for documents, and have documents appear in different parts of our filing
structures. Accordingly, in Placeless, documents have both universal properties



THE APPROPRIATION OF INTERACTIVE TECHNOLOGIES 471

(which are true for and visible to everyone) and personal properties (which are
true for and can be restricted to individuals). So, when I say that a document is
important, that need not be true for everyone. Different properties can be associated
with different users although the underlying document is the same (and maintains
its identity across different users).

2.4. CONTENT

Properties are the central feature of the Placeless design. However, properties are
simply metadata, while for most users, the most important feature of documents is
their content. Clearly, Placeless needs to manage document content in some way.
We did not want Placeless to be “yet another place to put your content”, along with
web servers, ftp servers, intranet servers, and so on. Similarly, we did not want
to reproduce the content management features offered by other infrastructures.
Instead, we want to be able to incorporate content in external “repositories” (such
as existing databases, filesystems or the Web) and incorporate it seamlessly into
Placeless.

This presents two problems, the “legacy repository” problem and the “legacy
application” problem. The legacy repository problem is the problem of incorpo-
rating existing content. Our solution is to attach a specific sort of active property
known as a content provider to each document with content. The content provider
can be thought of as an active property that implements the content read and write
operations; it encapsulates an access protocol for an existing repository, including
local and remote filesystems, the Web, IMAP mail servers and commercial docu-
ment management systems. Whenever a user reads and writes content in the
Placeless system, the content provider seamlessly mediates between the Placeless
application and the external repository.

The legacy application problem concerns what happens to that content; how
can it be routed to applications? We would like people to be able to use their
existing applications, even though those applications do not use the Placeless
programming interface. Some applications access content through well-established
network protocols (e.g. Web clients use HTTP, while mail clients use IMAP), and
for these, we provide server components in Placeless that provide implementa-
tions of those protocols. Many other important applications, like Microsoft Word,
do not operate through network protocols; instead, they read and write directly
to the filesystem. For these, our solution is, essentially, to be the filesystem. By
providing an implementation of a networked fileserver protocol, the Placeless
system can make its content available as if it were a filesystem. Clients “mount” the
Placeless document space as part of their filesystem, making all Placeless content
available to filesystem-centered legacy applications. This also means that conven-
tional browsing tools, like the Windows Explorer, can be used alongside Placeless
browsers to view content, copy files, and so on.



472 PAUL DOURISH

3. Placeless and appropriation

The Placeless Documents system was functional and employed in daily use for
around two years. It was used by its own developers as a basis for both program-
ming and for day-to-day information needs (e.g. it provided the primary email
infrastructure for a group of around 10 people for some time). In addition, it was
used by other research groups as a basis for their own development exercises,
within Xerox and externally. Further, it was used in collaboration with others to
develop specific application solutions to research problems (some of which will be
discussed later).

The discussion to follow will concentrate on how the design features incorpo-
rated into Placeless provide a basis for appropriation. This is based in a range
of different sorts of experiences with the Placeless Documents system. It plays
two roles in these examples. Primarily, it is an infrastructure for developing docu-
ment and information applications; in addition, it is a conceptual model that is
embodied by end-user applications. Even though end users interact with Placeless
through mediating applications, the basic Placeless model shows through many of
these. So, the lessons from Placeless Documents come from two primary experi-
ences: first, the experience of turning to Placeless as an alternative to conventional
information infrastructures for solving development problems; and second, the
experience of users with the Placeless Documents model as embodied by specific
prototype applications. Through both of these, this paper will explore a more funda-
mental question: the interactional and collaborative consequences of the alternative
information model that Placeless embodies.

Before going on to explore some particular cases of the use of Placeless Docu-
ments, it is worth pausing to reflect on the relationship between the Placeless
Documents design and appropriation.

We have already seen appropriation at work in the ways in which people adopt
and adapt the information structures presented by technical systems to make the
appropriate for their work. This is a widespread phenomenon; some researchers
such as Mackay (1990) or Trigg and Bødker (1994) have pointed out the ways in
which the role of integrating work practice and information systems is sufficiently
important as to be systematically worked into organisational arrangements.

Studies such as those previously cited of Barreau and Nardi or Kaptelinin
point out the barriers that conventional information and file systems can present
to effective appropriation. Consequently, we designed Placeless with an under-
standing of the need to accommodate appropriation explicitly. By integrating with
legacy content and legacy applications, we provide a means to incorporate Place-
less applications into existing working practices. By organising documents in terms
of properties rather than hierarchies, we allow users to establish multiple different
ways of organising documents for the different tasks they may want to perform. By
making properties entirely open-ended, we try to allow users to collaboratively and
continually revise how they organise and view their work. By separating personal
from universal properties, we decouple the interactions that different people’s



THE APPROPRIATION OF INTERACTIVE TECHNOLOGIES 473

views would imply. These features are provided to make it easier for users to
appropriate Placeless Documents and to incorporate it into their evolving structures
of work.

Placeless offers both end user applications and an infrastructure for developing
document applications. However, in the course of this paper, I want to consider
appropriation neither in terms of the browser applications that Placeless offers,
or in terms of the platform features that developers might exploit. Instead, I
want to consider how Placeless’s basic conceptual model – an unstructured soup
of documents annotated with arbitrary properties – can support appropriation of
Placeless-based systems and can help users find ways to express their information
needs in terms of the technical features available to them.

With that in mind, the following sections will present two case studies of infor-
mation management that we tackled using the Placeless Documents framework.
The case studies serve three roles here. The first is to provide concrete illustrations
of the role of appropriation in information management. The second is to highlight
how problems in appropriation are rooted in conventional approaches to informa-
tion infrastructure. The third is to show how we can apply the novel approach that
Placeless embodies to solve these problems and provide more explicit support for
observed practices of appropriation.

4. Case study #1: Collaborative document management

The first case study explores the collaborative document practices of an engineering
organisation. This is based on ethnographic materials collected by colleagues at
PARC as part of a series of studies of “working document collections” (Blomberg
et al., 1997; Trigg et al., 1999).

The engineering group they studied was engaged in the design of a bridge, but
at this early stage of the project, the principal focus of their attention is not the
bridge itself but the large collection of documents relating to project work. This
includes reports, letters, petitions, permits, engineering drawings, maps, newspaper
articles and other documents relating to all aspects of the project. A similar set of
documents accompanies all projects in this organisation; they are referred to as
“Project Files” and an intricate set of organisational practices govern the ways
in which Project Files are used and organised. In particular, the organisation lays
down a specific categorisation scheme by which documents are coded and located
within the project files. This scheme is called the Uniform File System or UFS.

Although the UFS is specifically designed for the needs of this organisation,
there are, none the less, a variety of problems that attend its use. In the course of
filing documents, members of the organisation need to find ways to make the UFS
relevant for their immediate concerns. The fact that they have such problems is not
a feature of the UFS per se; it is a feature of categorisation schemes in general.
The UFS is a representation of the organisation’s world, and, as Gerson and Star
(1986) observe, “no representation of the world is ever complete or permanent.”



474 PAUL DOURISH

So, in the course of filing or searching for documents, members of the organisation
encounter, recognise and deal with a variety of problems putting the UFS to work.
For instance, in the course of filing a document, one engineer comments:3

So there’s all these categories it could conceivably go under and I have to pick
one [. . .] certainly my assessment may be different than the guy next aisle over

Or again:

Ok now I don’t see what I thought I was looking for. So, uhm, I guess I would
stick it under uh Floodplain Evaluations. What was the other spot? Drainage is
usually done during the design phase and we’re not there yet. So that’s why I
would pick, uhm, but see 231 is Draft Environmental Document which is pretty
vague. So I’ll never find it. It’s just not going to happen. I’d probably be more
inclined to stick it under Drainage even though that’s not where it belongs? So
that’s what I’m going to do.

So, in the course of working with the UFS, members of the organisation orient
towards a set of problems with the way the UFS organises their work; problems of
filing, recognition and retrieval. The problems of using the UFS are also visible in
the organisation’s workspace, where printed or typewritten copies of the UFS – the
official set of categories to be used to file documents – carry handwritten annota-
tions recording how each specific group has amended it or established conventions
that govern how they will use it.

The issue of “the guy next aisle over” is particularly salient for this organisation
because the project files (or a significant percentage of them) will move with the
project through the various phases that make up its lifecycle. These phases may be
carried out by different sets of people. So it may well be the guy the next aisle over,
or the guy in another building years later, who will need to locate and retrieve the
document that the engineer is filing. The local practices that workgroups establish
to manage their documents and their practical filing problems may interfere with
the organisational need to be able to find documents again later, and to account for
and reason about filing practices.

Our engagement with this organisation was as part of their exploration of the
consequences and opportunities that online project files might offer. One proto-
type had already been constructed to help them with the transition from paper to
online and to offer them new models for document retrieval (Trigg et al., 1999).
As a separate effort, we explored the Placeless Documents model as the basis of a
prototype system for this organisation, and focussed in particular on the problem
of customisation and mutual intelligibility. Our concern was, given that each indi-
vidual and group customises the UFS to their own particular needs, how can we
support the mutual intelligibility of the document space necessary for effective
retrieval?



THE APPROPRIATION OF INTERACTIVE TECHNOLOGIES 475

4.1. THE UFS AS A COLLABORATIVE ARTIFACT

The ethnographic material, and in particular the observation of the variety of
ways in which the UFS functions in the work of engineers interacting through the
project files, suggests the key design element around which our solution, dubbed
“Macadam”, is designed. The observation is that the UFS is not simply a resource
through which the work of filing is conducted; it is, itself, part of that work. It
is an object of collaborative activity, in the way in which it is subject to collective
adaptation within and between working groups to make it appropriate to the work at
hand. Our design reflects this; in Macadam, the structure by which the documents
are organised is, itself, part of the same workspace through which the documents
are shared.

Our technical approach is described in more detail elsewhere (Dourish et al.,
1999b). Conceptually, Macadam’s representation of the categorisation hierarchy
can be thought of as a stack of translucent sheets, each of which describes part
of the hierarchy. Each sheet modifies the sheets below, but when they are viewed
together, the sheets collectively present a single category structure.

In this representation, the base “sheet” corresponds to the organisation’s view
of the category structure – the official UFS. “On top”, we place a new sheet that
describes the changes that a specific project might introduce to the UFS for its own
purposes. Over that, a further set of changes record the ways in which individual
work groups might operate, while a fourth sheet introduces personal changes for
workgroup members. When a document is categorised, the system records the
context in which the categorisation took place, that is, the set of “sheets” in play at
the time.

The key feature of this approach is that customisations to the category struc-
ture are recorded in relative rather than absolute terms. Instead of replacing the
existing structure with a new version that incorporates whatever changes the user
has requested, the system instead records the set of changes that the user has made,
and the structure to which those changes were applied. So, a set of customisations
might comprise the renaming of one node, the moment of part of the tree from
one place to another, and the addition of a new set of leaf nodes. The advantage
of this approach is that specific sets of changes can be turned on and off. The
system can show the structure either with or without a particular users’ or groups’
changes. Using the metaphor of the stack of translucent sheets, the system can add
and remove sheets to show different versions of the category structure. This allows
the system to create multiple views of the document – perhaps one view in terms
of the category structure with the changes, and one view in terms of a category
structure without them. These different views correspond to the perspectives of
different people and different groups, even though they are all looking at the same
set of documents.

By supporting these different views, Macadam balances the problems of
customisation and mutual intelligibility. Since project members and groups can
create new customisations at any time, the system meets their local need for filing



476 PAUL DOURISH

structures that match the detail of the project they are engaged in and the work they
are carrying out. At the same time, since people outside can view the documents
in terms of the organisational structure rather than the project’s own structure, the
problem of intelligibility is reduced. In other words, incorporating new ways of
working, and extending the system to accommodate them, need not interfere with
the larger organisational requirement for intelligible records. Fluidity in the system
supports the evolving nature of work practice and the incorporation of the system
into ways of working that is the hallmark of appropriation.

4.2. MACADAM, THE UFS AND APPROPRIATION

What can this example tell us about the relationship between technology and
practices of appropriation?

What is being appropriated here is the conceptual scheme by which documents
are organised. Although the organisation regards the UFS as a stable feature of
its work, we find that it is recruited in a variety of ways to meet the specific and
individual needs of each project. However, the natural encoding of the UFS into
technical terms – a traditional hierarchical classification – introduces a number of
features (such as broad visibility, universal coding, and so on) that interfere with
the appropriation of the UFS into local practice.

The design of Macadam allows us to overcome some of these problems, and,
critically, it does so through exploiting some of the basic conceptual features
embodied in Placeless. In particular, the fact that the static and universal hierarchy
of traditional information systems has been replace with a model that is multivalued
(that is, allowing documents to be coded in many different ways) and interpreted
(that is, subject to ongoing interpretation and filtering by the system) allows us
to accommodate the practices of appropriation that we observe going on around
the Project Files. In turn, these both rely on a separation between the information
being encoded and the encodings (in this case, the properties) that describe it.

These features, then, appear to be important technical concerns that support
the process of appropriation. A second case study will reinforce some, introduce
others, and examine some more problematic issues.

5. Case study #2: Workflow

Macadam exercised only the static properties in Placeless. The second case study
involves using active properties to add dynamic behaviour to documents.

In traditional systems, document functionality is normally locked inside appli-
cations. Applications control how we can interact with documents, how they will
behave, how their content is managed and so on. In Placeless, by associating this
information directly with the document through the use of active properties, we
move the locus of document activity from the application to the document infra-
structure. The functionality that would otherwise be locked inside the application



THE APPROPRIATION OF INTERACTIVE TECHNOLOGIES 477

is directly associated with the document, which itself becomes active. The active
property design allows us to “activate” documents, having them respond to the
ways that they are used.

With this model, it is natural to start to imagine how various sorts of docu-
ment applications, or application areas, can be migrated into the infrastructure
and become document services. One candidate is workflow. Workflow is normally
manifest in a system as an application.4 At this level, it offers various features such
as routing a document from person to person within an organisation, managing the
activity over the document, and coordinating activities according to a process repre-
sentation. Using active properties, we can provide these functional components in
the document infrastructure instead of in application space.

Incorporating workflow functionality into the infrastructure offers a number of
advantages. First, it means that workflow functionality can be offered independ-
ently of a document’s repository. So, for example, the same workflow system can
be used to handle documents stored in the filesystem, on the Web, or on a mail
server. This last feature is particularly valuable since document practice studies
highlight the central role that email messages play as resources for coordinating
work (Bellotti and Smith, 2000). Second, the infrastructure approach means that
workflow functionality can be offered independently of application. So, rather than
having to employ a workflow-specific client, a user can choose to use whatever
application they prefer to interact with the document; the application does not
need to be enhanced with any workflow features because workflow functionality
is added “for free” by the infrastructure. To explore this aspect of Placeless Docu-
ments, we developed a workflow system, called Bernoulli, structured in terms of
active properties.

Bernoulli is implemented using two active properties, one in-line and one
delegate. The in-line active property intercepts the read and write operations. It
looks at how people access the content of the document and examines the annota-
tions and changes they make to the content. For structured and semi-structured
documents, this analysis allows the system to become aware of significant state
changes. For example, when a user fills in the fields of a form, the system can
notice this and determine that a work step has taken place; or for program source
files, the system can determine when new functions have been added. (For less
structured content, an annotation mechanism allows users to express features of
the progress of the work.)

When the property recognises a step of this sort, it consults the record of the
process to which this document is attached and moves it from one stage to another
according to the activity sequence described in the process.

The first property, then, is defined entirely in terms of existing document opera-
tions (read and write). The second active property is a delegate. Delegates are active
properties that extend the document’s API to allow new, specialised operations. In
this case, the operations it provides allow the document to be examined in the
context of the representation; they allow the process to be queried, and graph-



478 PAUL DOURISH

Figure 1. Users can control the workflow application simultaneously through two interfaces,
either conventional document tools (left) or a specialised workflow application (right).

ical views with specifically workflow-related information to be constructed. As
illustrated in Figure 1, using these two properties lets us provide two sorts of inter-
faces – traditional interfaces using standard tools (taking advantage of the inline
property), and extended interfaces using specialised tools (taking advantage of the
delegate property).

5.1. EXTENDING WORKFLOW WITH CONTEXT INFORMATION

The Macadam example in the previous section showed that the flexible property
model could be used to capture and represent something of the context in which
document operations took place. Exploiting context in this way reflected the find-
ings of work practice studies and made the documents more understandable to
people by explaining something of their history. A similar set of features apply to
this example.

Traditional workflow systems tend to focus on the content of work but not
its context. Process representations highlight the details of what gets done (the
individual steps or tasks) but exclude information about how that work is actually
performed (the details of executing each task). The assumption on which they are
based is that the performance of one stage of the process is independent of the
performance of the other stages; as long the steps are completed in the right order,
coordination is accomplished.



THE APPROPRIATION OF INTERACTIVE TECHNOLOGIES 479

However, studies of process-based work in real organisations throw this
assumption into question. For example, MacLean and Marqvardsen (1998) report
on an investigation of the mortgage process at a British building society. The ethos
in this organisation was that they would make every effort to grant a mortgage
application if possible. Assessing the loan risk was seen as the process of “building
a case” to grant a mortgage application. So, although the process that they followed
described the information to be accumulated in support of the application, the
critical feature of the process for the organisation was not how information was
amassed but how it was assessed. What was critical was how the evidence would
be weighed, and whether it would make a compelling case. One one the factors
contributing to how information is assessed is the question of how it was collected.
For instance, an applicant’s salary details would support a case in different ways
if they were obtained from the applicant’s employer or from the applicant himself.
Weighing the evidence required an understanding of where that evidence had come
from, which was information outside the scope of the process. So, although this
organisation was run entirely around formalised processes, the practicalities of the
mortgage application process involve a great deal of walking from desk to desk
and making telephone calls in order to collect “out-of-band” information about
how the process steps had been performed, where information had come from,
and so on. The context surrounding the process is as important to the work of the
organisation as the process itself, but this contextual information is often missing
from traditional process support systems.

Since the Placeless Documents system offers the opportunity to associate
arbitrary information with documents through document properties, we incorpo-
rated some features to address these problems into Bernoulli. Our solution is called
“Perspectives” (Dourish et al., 1999a). At each stage of the process, we record
the “resources” from which the process information has been derived. Resource
categories can be included in the process description or added by users as they work
with the system. Resources are primarily other documents, but may also be links to
other people, information sources, and so on. Resources are linked directly to the
document, so that they travel with the document as it moves through the process.
At any stage, a user can see the resources that were associated with a document at a
particular stage in the process. So, this mechanism uses the process representation
as an index into the document’s history, allowing the context in which each activity
was performed to be re-established.

The case of Bernoulli shows that, by capturing contextual information and
allowing it to be linked into the application’s structures, we can provide better
support for the informal practices surrounding a formal description of working
processes encoded in an information system. By looking at how a system is
embedded within a wider set of practices and organisational needs, we attempt
to accommodate the different ways in which it might be appropriated. In this case,
then, support for appropriation lies in the use of a single, integrative, open-ended
platform through which applications can be related and linked.



480 PAUL DOURISH

5.2. BERNOULLI AND APPROPRIATION

The “Perspectives” example shows appropriation in a different way. The issue here
is not how users can impose their own structures on shared information, but rather,
how users can incorporate information into their patterns of work.

As before, in order to understand appropriation in this case, and to see the
ways in which the technology is incorporated into working practice (such as at
the Building Society studied by Maclean and Marqvardsen), we need to assess
the way that the technical infrastructure is configured. In this case, the way that
the traditional application models creates a separation between the use of a docu-
ment in one application (e.g. the workflow system) and another (e.g. email, word
processor, etc.) interferes with this.

So the key technical feature supporting appropriation in this example is the
revision of the conventional relationship between document, activity and applica-
tion. Traditionally, documents and files are passive entities, while the potential for
activity is locked within applications. Further, most documents are designed to
operate with a single application. By breaking application functionality into smaller
pieces and allowing them to be associated directly with documents (through active
properties), we achieve two benefits. First, end users can customise the behav-
iour of documents directly by associating active properties with them, and hence
gaining finer-grained control over the ways in which documents are incorporated
into their environments and their work. Second, the functionality becomes persist-
ently associated with documents, so that they carry these specialisations with them
at all times, even when no “application” is running. Third, it allows documents
to reflect and participate more directly in the many different activities in which
they may be involved. This component model, then, allows us to break away
from an application-centric approach to information processing, and move towards
an artifact-centric approach which offers much greater flexibility to information
users.

6. Designing for appropriation

The primary concern of this paper is to explore the technical foundations of
appropriation. Having identified a number of features of information systems
as problematic for the incorporation of technologies into more flexible forms
of practice, I described the alternative model embodied in the Placeless Docu-
ments system, and presented two examples to illustrate how its conceptual model
relates to the problems of appropriation. What we have seen is that Placeless’s
assault on traditional information models is focused largely on “moving the bound-
aries” – making information available outside of traditional application boundaries,
separating application and activity, and allowing information structures to be more
flexibly designed.



THE APPROPRIATION OF INTERACTIVE TECHNOLOGIES 481

One of the Placeless Documents system’s design goals was to use this greater
flexibility in order to support appropriation and adaptation. So, at this point, it is
appropriate to look back at the assumptions that the design embodies and how they
fare in light of developing working prototypes for various information tasks.

6.1. ORGANISING INFORMATION

The first hypothesis was that properties would be a good way for users to organise
information. Our experiences in a range of applications, including those discussed
here, demonstrate that the property model provides a means for people to create
information structures that are incremental, revisable, and overlapping. Although
it was not our original design intent, we have also found that properties are also a
valuable way for applications to organise information in ways meaningful to users.
So, for example, Bernoulli uses properties to manage document history; by using a
property model, document history can be easily combined with other document
features without interfering with the inherent functionality associated with the
documents being manipulated. The benefits of property-based organisation include
compositionality (different schemes can be brought together over the same infor-
mation without conflicts) and extensibility (new properties can always be added
without any requirement for pre-defined structure). However, we have also found
that, while properties are a natural conceptual model for information storage and
retrieval, they are frequently an inappropriate model for interface design. Increas-
ingly, our applications use more traditional or task-specific forms of presentation
for information that is internally represented as properties. So, for example, our
email client uses properties on documents to record the state of mail messages,
but the user interface presents that information in more conventional terms, using
folders, flags and font features to display the organisation and the state of messages.
Similarly, although Bernoulli stores process representations and document relation-
ships as properties, the user interface displays a traditional workflow graph diagram
and uses proximity to indicate document links.

In a similar vein, Macadam illustrated that the flexible, composable informa-
tion management structure that Placeless offers allows different structures to be
built up over the same underlying information. The principle use of this was to
allow the system to accommodate the different perspectives that occurred through
the organisation. However, it also supports the evolution of information structures
over time, so that as the categorisation structure changes, the information that
it describes can continue to be accessible. Being robust in the face of evolving
information and practices is critically important in supporting appropriation, since
appropriation inherently involves transformations of this sort.

The appropriation design principle we take away from this is that designing
for appropriation implies supporting multiple perspectives on information. Appro-
priable systems need to support the different perspectives that different people
might have on information, and support them in moving fluidly from one view



482 PAUL DOURISH

to another. In turn, this implies a separation between information and the structures
that describe it, so that many structures can apply to the same information. The
property model is one means by which this can be achieved.

6.2. COMPOSABLE FUNCTIONALITY

Our second hypothesis was that active properties would allow users to control
document behaviour composably.

This is both a technical question and an interactional question. Technically,
Placeless clearly supports incremental customisation of behaviour through active
properties. Interactionally, we have encountered some design difficulties which
would limit the usefulness of active properties in real use. Certainly, active
properties – if properly designed – can be combined on documents and provide the
end-user with control over the behaviour of the documents. We have demonstrated
this with a range of small applications that allow documents to render themselves
variably in different circumstances, or to monitor activities (as in Bernoulli). Since
this control is associated with the document itself, rather than with a specific
application or server, then it persists in the infrastructure, allowing users to state
behaviours that they would like the documents to maintain even when a user is not
there to be “in the loop.”

We have also found that active properties can be exploited by applications,
which can essentially delegate some of their behaviour to the document, too. Again,
the persistent feature of active properties means that these behaviours stay with the
document even when the application is not running, and so the boundaries between
application and infrastructure begin to blur.

This blurring means that, essentially, the infrastructure can be configured and
adapted to more naturally support particular styles of interaction in which users
might want to engage. Similarly, the composable nature of active properties
helps support the fact that a single document might be involved in a range of
tasks; the process of appropriation might mean extending the range of ways in
which a document is used, so this compositional feature is important. However,
it comes at a cost. Since active properties insert themselves into the execution
paths of pre-defined document operations, the behaviour of those operations is no
longer well-defined. Standard document operations may involve non-standard code
running in associated active properties. The result is that it is harder for end-users
to understand what sequence of code elements their actions might invoke.

The design principle we take away from this, then, is to preserve visibility in an
appropriable system. People need to be able to understand how a system works in
order to understand how to make it work for them. So, we need to allow them to see
not just the opportunities for action (the affordances that characterize traditional
user interface design), but also the consequences of those actions. Being able to
understand the consequences of action is critical to being able to incorporate the
system into patterns of work.



THE APPROPRIATION OF INTERACTIVE TECHNOLOGIES 483

It might seen obvious that interaction design should make the activities of the
system visible to users, and of course, so it is. However, our traditional approaches
to making the system’s actions visible depend on knowing in advance what those
actions are. Component-based architectures call this into question. When inter-
mediate designers, tinkerers and end-users can combine active components to
create new kinds of behaviours, and when those active entities can be appropri-
ated and incorporated into working activities in a variety of ways and a variety of
settings, the privileged position of the “designer” dissolves. There is no position
from which the actions of the system can be determined – not even, as the case
of Bernoulli shows, from within the system itself, given that system boundaries
are frequently opaque. The requirement for visibility, then, is transformed into a
requirement of a different sort. It becomes a requirement that the components of
the system be amenable to some form of internal examination and reasoning, which
would allow some model of the system’s activity to be constructed “on the fly”
(Dourish, 1995).

6.3. GROUP WORK

The third hypothesis we wanted to explore was that properties would provide
a good basis for group work, allowing a document repository to support the
collaboration and coordination needs of a group of users.

The question here is whether the features of the property model provide benefits
that can resolve some of the tensions inherent in personal versus collective infor-
mation use. The work on Macadam was directed particularly towards one of these
tensions – the tension between customisation and mutual intelligibility. Macadam
demonstrates that the property model can provide some relief from this problem.
So, in attempting to use the system to support workgroup document activities,
we have found that properties do indeed offer a number of benefits over more
traditional approaches. Again, the compositionality of properties, both static and
active, allow members of a group to organise a common document corpus for
their different individual needs, while properties also act as points of coordination
between them.

However, although we had made explicit provision for collaborative document
management in the infrastructure design, through the separation of personal and
universal properties, we found the issues to be quite different when we came to
build applications for specific settings. Our experience in these settings has been
that the issues of information sharing and group access are ones that are intimately
influenced by the way in which the group chooses to work. The structure of sharing
is task-specific, and the coordination of shared information is an achievement of
group work, rather than an prerequisite for it.

On the basis of these experiences, then, we draw the conclusion that appropri-
able technologies should make information sharing an application matter rather
than an infrastructure matter. Workgroup information sharing is a matter of prac-



484 PAUL DOURISH

tice, not of design, and so applications must be able to present and employ a variety
of task-specific sharing mechanisms rather than a universal general model.

This may seem an unlikely conclusion given that systems such as Placeless tend
to emphasise the expansion of what the infrastructure can accomplish and diminish
the role of applications. In fact, it can be read as a different requirement, to enrich
the boundary between application and infrastructure so that applications and users
can express (directly or indirectly) their needs to the infrastructure. This allows
us to move decisions about “what will happen next” closer to the user. It ensures,
then, that the part of the system with which the user is directly interacting is the
one which is in control of how the system’s resources are deployed in support of
the user’s activities.

7. Appropriation, meaning and boundaries

Although this paper has spent a good deal of time exploring design aspects of the
Placeless Documents infrastructure and application, the primary topic has not been
the Placeless Documents system itself, but rather the process of appropriation, the
process by which technologies are adopted and adapted by work groups.

A range of studies in CSCW have encountered questions of appropriation in
exploring the adoption of collaborative technologies. Harrison and Dourish (1996)
use the term to explore the different adoption patterns of two superficially similar
applications of video technology, as part of a larger exploration of the relative roles
of “place” and “space” in collaborative settings; while Orlikowski’s studies of the
adoption patterns of Lotus Notes similarly observe patterns of mutual adaptation
of work practice and technology (Orlikowski, 1992, 1995).

From a more theoretical perspective, Poole and De Sanctis propose appropri-
ation as one of the elements of their Adaptive Structuration Theory (Poole and De
Sanctis, 1990). Adaptive Structuration Theory is a form of Giddens’ Structuration
Theory (Giddens, 1984) that is specifically adapted to deal with questions of tech-
nology adoption and use. Structuration Theory, as a general social theory, is largely
concerned with the mutual interactions of social systems, embodied in regularised
social practices, and social structures, the rules and resources that guide and sustain
action within the system. Structuration Theory argues that structure both constrains
and enables social action, and is concerned with the way in which social struc-
tures both sustain action and are themselves transformed through it. In Adaptive
Structuration Theory, the role that technologies plays in this process is highlighted
and elaborated. Poole and De Sanctis introduce concepts such as the spirit of the
technology (loosely, the expectations on the part of a technology’s designers about
how it will be used, and the structures that it encodes) and appropriations of tech-
nology into practice, through which users incorporate specific structural features
from the technology into their practices, more or less faithfully to the designers’
intent. Adaptive Structuration Theory, though, has primarily been used to analyse
the adoption patterns of group technologies. In this paper, I have been making



THE APPROPRIATION OF INTERACTIVE TECHNOLOGIES 485

a more general use of the term “appropriation,” and have been concerned with
technical and design consequences. What does it mean to say that a technology is
appropriated by an individual or a group? What relationship between technology
and practice does appropriation propose? What does this relationship imply for
interactive and collaborative system design?

The solution is to start not with technology but with practice, and in turn to
see practice as more than simply how things get done. Instead, practice concerns
the meaning of action. In Communities of Practice, Etienne Wenger (1998, p. 51)
comments, “Practice is, first and foremost, a process by which we can experience
the world and our encounters with it as meaningful.” Practice reflects the sets of
meanings that can be ascribed to objects and actions over those objects as part of
a larger enterprise. As individuals become members of a community of practice,
they come to understand and incorporate this system of meaning into the ways in
which they see the world and organise their actions within it.

So, appropriation concerns the way in which technology comes to play a role
within this system of meaning. In particular, it plays two roles. The first that
features of the system itself become meaningful; people develop ways of under-
standing how the representations that the system might offer are consequential for
their work, and how these representations incorporate and refer to other meaningful
entities (people, documents, appointments, or whatever). Secondly, technology
conveys meaning. That is, the system is a means by which people can see (and
then interpret and understand) the actions of others, whether that action is repre-
sented explicitly (as is often the case with “awareness” technologies in CSCW) or
implicitly (reflected in the state of the system).

Placeless Documents, then, turns out to be a particularly useful vehicle to
explore questions of appropriation, since its principal role for end-users is to
create information structures. Information structures inherently reflect the meaning
of the stored information for the specific set of purposes to which a user or
group will put it, and simultaneously lend meaning to information according to
its place in the structure. The active properties in the Placeless system reflect the
consequences of those meanings, and the particular ways in which users would
like the system to respond. However, the same principles (supporting multiple
perspectives, making action and its consequences visible, and making information
control an application matter) clearly apply in a range of other application and
collaboration contexts, from communication systems to process support tools to
interface generators. Lessons from Placeless concerning the relationship between
appropriation, practice and meaning have a much broader application than simply
information management.

What aspect of the Placeless Documents design allows it to support the creation
of new meanings? Perhaps the most critical is that it allows users to organise their
work independently of the boundaries that conventional system models present.
Rather than offering a fixed set of applications, with rigid boundaries between
them, Placeless offers an approach which is fine-grained and compositional, so that



486 PAUL DOURISH

work can be distributed across a number of areas of activity that would traditionally
be located within separate applications (such as workflow system, email system,
word processor, etc.). The fixed boundaries of conventional application models
impose structure and meaning on the activities of users, rather than allowing
them to create and communicate their own. By blurring those boundaries, Place-
less’s component-oriented model allows meaning to emerge from the practices into
which the technologies are incorporated. The blurring of boundaries comes from a
separation between information and the structures and encodings that allow people
to manage it. This separation between information and representation is a familiar
idea, which has been employed in the past to solve traditional technical problems
such as interoperation and generality; for example, Kelly et al. (1996) employ a
similar approach in their collaborative CASE environment. Placeless differs first
in applying this approach much more deeply (there is no underlying core repre-
sentation) and in making it an intrinsic part of the user experience. Ongoing work
highlights the critical role that decoupled representation can play in coordinating
heterogeneous work (Reddy et al., 2001).

What this suggests is that recent uses of component-oriented approaches in
CSCW (e.g. Litiu and Prakash, 2000; Roussev et al., 2000) may have a broader
application than simply to the internal architecture of collaborative systems.
Although component models are seen as a route towards flexibility, responsiveness
and maintainability at an infrastructure level, they may also offer a route towards a
more flexible user experience and, in turn, to a better match between the capabilities
of technical systems and the needs of practice.

8. Ongoing and future work

Our experiences developing the Placeless Documents infrastructure and looking at
the experimental deployment of applications on top of it suggests that the basic
conceptual model which has been the focus for this paper is largely successful.
Properties provide a natural and compelling way to organise information resources,
and their natural compositionality supports information sharing and collaborative
interaction.

The Placeless Documents infrastructure is now in its third major revision. This
allows us to focus more directly on the needs of applications and interaction styles.
Current work is looking at the applicability of spatial hypertext models to the
design of interfaces for fluid information spaces. Spatial hypertext systems exploit
spatial arrangements and visual features of information objects for clustering and
relating them, rather than using formal and explicit linkage structures. These
models lend themselves naturally to a more fluid style, particularly for sensemaking
tasks (Shipman and Marshall, 2000). Our goal is to use this approach to support
a wider application deployment that can in turn provide richer understandings of
the practical issues surrounding property-based information management and the
appropriation of fluid information stores.



THE APPROPRIATION OF INTERACTIVE TECHNOLOGIES 487

9. Conclusions

Studies of customisation in interactive systems have typically concentrated on the
way in which explicit features of the system’s configuration can be adjusted to
suit the different settings in which the system might be used, or the needs or
preferences of different people who might use them. However, customisation is
a broader phenomenon than this perspective would suggest. In this paper, I have
used the term “appropriation” to refer to the ways in which people adopt and adapt
interactive technologies, fitting them into working practices and evolving those
practices around them. Most of the papers in this special issue present discussion
theoretical frameworks for appropriation and show how, in a variety of settings,
these frameworks can be used to explain how the process of appropriation leads to
transformations in the use of technology. In contrast, this paper explores the tech-
nical foundations of appropriation. Clearly, both of these – a theoretical account of
the process of appropriation, and a foundational understanding of the consequences
of technological design – are necessary if we are to be able to produce software
systems that fit more naturally into adaptive patterns of practice.

Our experiences with a range of applications built on top of the Placeless infra-
structure point to some common design principles. In this paper, I have discussed
three: supporting the interoperation between multiple perspectives or organisations
for the same information, making action and the consequences of action visible in
an interface, and making control over information a matter for the application rather
than the infrastructure. These principles each reflect part of a larger exploration of
the potential uses of composable component-based architectural models not only
for infrastructure development but also for a radically different collaborative user
experience, and resonate with the experiences of appropriation in other settings
reported in the research literature.

These explorations of appropriation, which began with the attempt to take a
broader view of the role of customisation, have suggested that appropriation is
best thought of as the incorporation of technology not simply into practice but into
systems of meaning. Appropriation is the creation, management and communica-
tion of meaning, within a community of practice. Viewed in this light, then, we
can see how the three principles put forward here can have application to a much
broader set of tasks and applications than I have discussed here. At the same time,
it also shows how much more work remains to be done to elaborate appropriation
as a fundamental aspect of system adoption, and as a critical bridge between design
and studies of practice in CSCW and HCI.

Acknowledgements

Many people contributed to the development of the Placeless Documents system.
The other members of the Placeless Documents group – Keith Edwards, Anthony
LaMarca, John Lamping, Karin Petersen, Mike Salisbury, Doug Terry and Jim
Thornton – made it all possible. The work on Macadam was conducted in collabo-



488 PAUL DOURISH

ration with John Lamping, Tom Rodden, Lucy Suchman, Randy Trigg and Jeanette
Blomberg, while the Bernoulli work arose from a collaboration with Richard
Bentley, Rachel Jones and Allan MacLean. Mark Ackerman, Jonathan Grudin and
the issue editors and reviewers provided valuable feedback on earlier presentations
of these ideas.

Notes

1. Placeless Documents was developed by a team of researchers, including myself, at the Xerox
Palo Alto Research Center.

2. Active properties in Placeless are similar to, but more general than, related approaches such as
active (dynamic) values or “triggers.”

3. These quotations are taken from transcripts of ethnographic interviews conducted by Jeanette
Blomberg, Lucy Suchman and Randy Trigg.

4. I am construing “application” broadly here. Typically, workflow is organised as a client/server
system; however, it is manifest to a user as an application rather than as an infrastructure service.

References

Barreau, D. and B. Nardi (1995): Finding and Reminding: File Organization from the Desktop.
SIGCHI Bulletin, vol. 27, no. 3.

Bellotti, V. and I. Smith (2000): Informing the Design of an Information Management System with
Iterative Fieldwork. In Proc. ACM Conf. Designing Interactive Systems DIS 2000, New York,
NY. New York: ACM.

Bentley, R. and P. Dourish (1995): Medium versus Mechanism: Supporting Collaboration through
Customisation In Proc. Fourth European Conf. on Computer-Supported Cooperative Work
ECSCW’95, Stockholm, Sweden. Dordrecht: Kluwer.

Blomberg, J., L. Suchman and R. Trigg (1997): Reflections on a Work-Oriented Design Project. In
Bowker, Star, Turner and Gasser (eds.): Social Science, Tehnical Science and Cooperative Work:
Bridging the Great Divide. Nahwah, NJ: Laurence Erlbaum.

Bowers, J., G. Button and W. Sharrock (1995): Workflow from Within and Without: Technology and
Cooperative Work on the Print Industry Shopfloor. In Proc. Fourth European Conf. Computer-
Supported Cooperative Work ECSCW’95, Stockholm, Sweden. Dordrecht: Kluwer.

Button, G. and W. Sharrock (1997): The Production of Order and the Order of Production. In
Proc. Fifth European Conf. Computer-Supported Cooperative Work ECSCW’95, Lancaster, UK.
Dordrecht: Kluwer.

Dourish, P. (1997): Accounting for System Behaviour: Representation, Reflection and Resourceful
Action. In Kyng and Mathiassen (eds.): Computers and Design in Context. Cambridge, MA: MIT
Press.

Dourish, P., R. Bentley, R. Jones and A. MacLean (1999a): Getting Some Perspective: Using
Process Representations to Index Document History. In Proc. ACM Conf. Supporting Group
Work GROUP’99, Phoenix, AZ. New York: ACM.

Dourish, P., J. Lamping and T. Rodden (1999b). Building Bridges: Customisation and Mutual
Intelligibility in Shared Category Management. In Proc. ACM Conf. Supporting Group Work
GROUP’99, Phoenix, AZ. New York: ACM.

Dourish, P., W. Edwards, A. LaMarca, J. Lamping, K. Petersen, M. Salisbury, D. Terry and
J. Thornton (2000): Extending Document Management Systems with User-Specific Active
Properties. ACM Trans. Information Systems, vol. 18, no. 2, pp. 140–170.



THE APPROPRIATION OF INTERACTIVE TECHNOLOGIES 489

Gerson, E. and L. Star (1986): Analyzing Due Process in the Workplace. ACM Trans. Office
Information Systems TOIS, vol. 4, no. 3, pp. 257–270.

Giddens, A. (1984): The Constitution of Society: Outline of the Theory of Structuration. Cambridge:
Polity.

Greenberg, S. (1991): Personalizable Groupware: Accommodating Individual Roles and Group
Differences. In Proc. European Conf. Computer-Supported Cooperative Work ECSCW’91,
Amsterdam, Netherlands. Dordrecht: Kluwer.

Grudin, J. (1988): Why CSCW Applications Fail: Problems in the Design and Evaluation
of Organizational Interfaces. In Proc. ACM Conf. Computer-Supported Cooperative Work
CSCW’88, Portland, OR. New York: ACM.

Grudin, J. and L. Palen (1995): Why Groupware Succeeds: Discretion or Mandate? In Proc.
European Conf. Computer-Supported Cooperative Work ECSCW’95, Stockholm, Sweden.
Dordrecht: Kluwer.

Harrison, S. and P. Dourish (1996): Re-Place-ing Space: The Roles of Space and Place in Collabora-
tive Environments. In Proc. ACM Conf. Computer-Supported Cooperative Work CSCW’96,
Boston, MA. New York: ACM.

Kaptelinin, V. (1996): Creating Computer-Based Work Environments: An Empirical Study of
Macintosh Users. In Proceedings of the ACM SIGCPR/SIGMIS’96 Conference, Denver,
Colorado. New York: ACM.

Kelly, S., K. Lyytinen M. and Rossi (1996): MetaEdit+: A Fully Configurable Multi-User and Multi-
Tool CASE and CAME Environment. In Constantinopoulos, Mylopoulos and Yassiliou (eds.):
Lecture Notes in Computer Science 1080: Proc. Eighth Intl. Conf. Advanced Information Systems
Engineering CAiSE’96, Heraklion, Crete. Berlin: Springer, pp. 1–21.

Litiu, R. and A. Prakash (2000): Developing Adaptive Groupware Applications Using a Mobile
Component Framework. In Proc. ACM Conf. Computer-Supported Cooperative Work CSCW
2000, Philadelphia, PA. New York: ACM.

Mackay, W. (1990): Patterns of Sharing Customisable Software. In Proc. ACM Conf. Computer-
Supported Cooperative Work CSCW’90, Los Angeles, CA. New York: ACM.

MacLean, A., K. Carter, L. Lovstrand and T. Moran (1990): User-Tailorable Systems: Pressing the
Issues with Buttons. In Proc. ACM Conf. Human Factors in Computing Systems CHI’90, Seattle,
WA. New York: ACM.

MacLean, A. and P. Marqvardsen (1998): Crossing the Border: Document Coordination and the
Integration of Processes in a Distributed Organisation. In Wakayama et al. (eds.): Information
and Process Integration in Enterprises: Rethinking Documents. Boston: Kluwer, pp. 109–124.

Orlikowski, W. (1992): Learning from Notes: Organizational Issues in Groupware Implementation.
In Proc. ACM Conf. Computer-Supported Cooperative Work CSCW’92, Toronto, Ontario. New
York: ACM.

Orlikowski, W. (1995): Evolving with Notes: Organizational Change around Groupware Technology.
Working Paper 186, Center for Coordination Science. Cambridge, MA: MIT.

Palen, L. (1995): Social, Individual and Technological Issues for Groupware Calendar Systems. In
Proc. ACM Conf. Human Factors in Computing Systems CHI’99, Pittsburgh, PA. New York:
ACM.

Poole, M. and G. De Sanctis (1990): Understanding the Use of Group Decision Support Systems:
The Theory of Adaptive Structuration. In Faulk and Steinfield (eds.): Organizations and
Communication Technology. Newbury Park: Sage, pp. 173–193.

Reddy, M., P. Dourish and W. Pratt (2001): Coordinating Heterogeneous Work: Information and
Representation in Medical Care. In Proc. European Conf. Computer-Supported Cooperative
Work ECSCW 2001, Bonn, Germany. Dordrecht: Kluwer.

Roussev, V., P. Dewan and V. Jain (2000): Composable Collaboration Infrastructures Based on
Programming Patterns. In Proc. ACM Conf. Computer-Supported Cooperative Work CSCW 2000,
Philadelphia, PA. New York: ACM.



490 PAUL DOURISH

Shipman, F. and C. Marshall (2000): Formality Considered Harmful: Experiences, Emerging
Themes, and Directions on the Use of Formal Representations in Interactive Systems. Computer
Supported Cooperative Work, vol. 8, no. 4, pp. 333–352.

Suchman, L. (1987): Plans and Situated Actions: The Problem of Human-Machine Communication.
Cambridge: Cambridge University Press.

Trigg, R., J. Blomberg and L. Suchman (1999): Moving Document Collections Online: The Evolu-
tion of a Shared Repository. In Proc. European Conf. Computer-Supported Cooperative Work
ECSCW’99, Copenhagen, Denmark. Dordrecht: Kluwer.

Trigg, R. and S. Bødker (1994): From Implementation to Design: Tailoring and the Emergence
of Systematization in CSCW. In Proc. ACM Conf. Computer-Supported Cooperative Work
CSCW’94, Chapel Hill, NC. New York: ACM.

Wenger, E. (1998): Communities of Practice. Cambridge: Cambridge University Press.




